STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OSB09811.1DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (1161 aa)    
Predicted Functional Partners:
OSB07923.1
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
  
 
 0.986
OSB10161.1
DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.983
dnaX
DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity.
 
 0.981
OSB08336.1
DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.976
OSB11897.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.897
OSB07943.1
Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism.
 
 
 0.878
polC
PolC-type DNA polymerase III; Required for replicative DNA synthesis. This DNA polymerase also exhibits 3' to 5' exonuclease activity.
    
0.874
OSB11858.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.860
OSB09744.1
Single-stranded DNA-binding protein; Binds to single stranded DNA and may facilitate the binding and interaction of other proteins to DNA; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.860
dinB
DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.
  
 0.830
Your Current Organism:
Paraclostridium bifermentans
NCBI taxonomy Id: 1490
Other names: ATCC 638, BCRC 14542, Bacillus bifermentans, Bacillus bifermentans sporogenes, Bacillus centrosporogenes, CCRC 14542, CCRC:14542, CCUG 36626, CIP 104309, Clostridium bifermentans, DSM 14991, Martellillus bifermentans, NCIMB 10716, NCTC 13019, P. bifermentans
Server load: low (24%) [HD]