STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hptHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa)    
Predicted Functional Partners:
tilS
tRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family.
 
  
 0.985
guaA
GMP synthetase; Catalyzes the synthesis of GMP from XMP.
  
 
 0.955
guaB
IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family.
    
 0.942
ALP91262.1
Purine-nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.
  
 0.929
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
  
 
 0.926
adk
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
 
  
 0.923
apt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
   
 0.922
xpt
Xanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis.
   
 0.921
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.915
purH-2
5-aminoimidazole-4-carboxamide ribonucleotide transformylase; Catalyzes the formylation of AICAR with 10-formyl-tetrahydrofolate to yield FAICAR and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.915
Your Current Organism:
Clostridium butyricum
NCBI taxonomy Id: 1492
Other names: ATCC 19398, Amylobacter navicula, Bacillus amylobacter, Bacillus butyricus, Bacillus navicula, Bacterium navicula, C. butyricum, CCUG 4217, CIP 103309, Clostridium kainantoi, Clostridium naviculum, Clostridium pseudotetanicum, DSM 10702, HAMBI 482, IAM 14194, IFO 13949, Metallacter amylobacter, NBRC 13949, NCCB 89156, NCIB 7423, NCIMB 7423, NCTC 7423, VPI 3266
Server load: low (24%) [HD]