STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALP90319.1Cold-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (69 aa)    
Predicted Functional Partners:
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
   
 
 0.829
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.820
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.774
rpsL
30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
   
 
 0.743
rpsQ
30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA.
   
 
 0.717
rpsT
30S ribosomal protein S20; Binds directly to 16S ribosomal RNA.
   
 
 0.683
rpmE
50S ribosomal protein L31; Binds the 23S rRNA.
  
 
 0.682
rpsU
30S ribosomal protein S21; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS21 family.
  
 
 0.681
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
   
 
 0.654
rplO
50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family.
   
   0.648
Your Current Organism:
Clostridium butyricum
NCBI taxonomy Id: 1492
Other names: ATCC 19398, Amylobacter navicula, Bacillus amylobacter, Bacillus butyricus, Bacillus navicula, Bacterium navicula, C. butyricum, CCUG 4217, CIP 103309, Clostridium kainantoi, Clostridium naviculum, Clostridium pseudotetanicum, DSM 10702, HAMBI 482, IAM 14194, IFO 13949, Metallacter amylobacter, NBRC 13949, NCCB 89156, NCIB 7423, NCIMB 7423, NCTC 7423, VPI 3266
Server load: low (20%) [HD]