STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
luxSS-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family. (159 aa)    
Predicted Functional Partners:
mtnN
S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Belongs to the PNP/UDP phosphorylase family. MtnN subfamily.
 
 0.995
metC
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.963
ALP90730.1
Homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.962
ALP91101.1
Homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.960
ALR90343.1
5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.929
ALP89157.1
O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.907
ALP89417.1
O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.907
patB
Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
ALP90664.1
Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family.
  
 
 0.899
cysK
Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family.
  
 
 0.889
Your Current Organism:
Clostridium butyricum
NCBI taxonomy Id: 1492
Other names: ATCC 19398, Amylobacter navicula, Bacillus amylobacter, Bacillus butyricus, Bacillus navicula, Bacterium navicula, C. butyricum, CCUG 4217, CIP 103309, Clostridium kainantoi, Clostridium naviculum, Clostridium pseudotetanicum, DSM 10702, HAMBI 482, IAM 14194, IFO 13949, Metallacter amylobacter, NBRC 13949, NCCB 89156, NCIB 7423, NCIMB 7423, NCTC 7423, VPI 3266
Server load: low (20%) [HD]