STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALR90459.1Homocitrate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-IPM synthase/homocitrate synthase family. (265 aa)    
Predicted Functional Partners:
ALR90458.1
Homocitrate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.995
accC
acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 
 0.949
accC-2
acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 
 0.949
nifJ
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.945
nifJ-2
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.945
nifJ-3
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.945
ALP89283.1
acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
  
 
 0.941
ALP89117.1
Transferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-IPM synthase/homocitrate synthase family.
 
  
0.935
ALP88781.1
Bifunctional acetaldehyde-CoA/alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the iron-containing alcohol dehydrogenase family.
  
 
 0.921
leuA
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily.
     
0.911
Your Current Organism:
Clostridium butyricum
NCBI taxonomy Id: 1492
Other names: ATCC 19398, Amylobacter navicula, Bacillus amylobacter, Bacillus butyricus, Bacillus navicula, Bacterium navicula, C. butyricum, CCUG 4217, CIP 103309, Clostridium kainantoi, Clostridium naviculum, Clostridium pseudotetanicum, DSM 10702, HAMBI 482, IAM 14194, IFO 13949, Metallacter amylobacter, NBRC 13949, NCCB 89156, NCIB 7423, NCIMB 7423, NCTC 7423, VPI 3266
Server load: low (20%) [HD]