STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ANE49660.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (229 aa)    
Predicted Functional Partners:
ANE50558.1
ATP synthase subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.986
atpD
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
  
 0.986
atpE
ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.986
atpH
ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.986
atpA
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
 0.986
atpB
ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
  
 0.985
atpF
ATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
  
 
 0.968
ANE49563.1
NADH:ubiquinone oxidoreductase; NuoCD; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain; subunits NuoCD, E, F, and G constitute the peripheral sector of the complex; in Escherichia coli this gene encodes a fusion protein of NuoC and NuoD that are found separate in other organisms; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.962
ANE49659.1
Aminotransferase DegT; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DegT/DnrJ/EryC1 family.
 
  
 0.919
rplP
50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family.
   
 
 0.832
Your Current Organism:
Flavisolibacter tropicus
NCBI taxonomy Id: 1492898
Other names: F. tropicus, Flavisolibacter sp. LCS9, Flavisolibacter tropicus Lee et al. 2016, JCM 19972, KCTC 42070, strain LCS9
Server load: low (18%) [HD]