node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ANE49896.1 | gcvH | SY85_04705 | SY85_18735 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.989 |
ANE49896.1 | gcvP | SY85_04705 | SY85_06905 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.971 |
ANE49896.1 | gcvT | SY85_04705 | SY85_15675 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.985 |
ANE49896.1 | glyA | SY85_04705 | SY85_08155 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.943 |
ANE53464.1 | ANE53475.1 | SY85_12495 | SY85_13240 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.991 |
ANE53464.1 | folD | SY85_12495 | SY85_21205 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.931 |
ANE53464.1 | gcvP | SY85_12495 | SY85_06905 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.772 |
ANE53464.1 | gcvT | SY85_12495 | SY85_15675 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.933 |
ANE53464.1 | glyA | SY85_12495 | SY85_08155 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.945 |
ANE53464.1 | thyA | SY85_12495 | SY85_06040 | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. | 0.922 |
ANE53475.1 | ANE53464.1 | SY85_13240 | SY85_12495 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.991 |
ANE53475.1 | gcvP | SY85_13240 | SY85_06905 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.709 |
ANE53475.1 | gcvT | SY85_13240 | SY85_15675 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.932 |
ANE53475.1 | glyA | SY85_13240 | SY85_08155 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.921 |
ANE53475.1 | purH | SY85_13240 | SY85_17655 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.914 |
ANE53475.1 | purN | SY85_13240 | SY85_16805 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.915 |
folD | ANE53464.1 | SY85_21205 | SY85_12495 | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.931 |
folD | gcvH | SY85_21205 | SY85_18735 | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.496 |
folD | gcvP | SY85_21205 | SY85_06905 | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.862 |
folD | gcvT | SY85_21205 | SY85_15675 | 5,10-methylene-tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.962 |