STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CBH22243.1Putative ATP synthase protein I; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology. (122 aa)    
Predicted Functional Partners:
CBH22244.1
Protein of unknown function; No homology to any previously reported sequences.
       0.800
atpE
AtpE; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
     
 0.643
atpB
F0 sector of membrane-bound ATP synthase, subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane.
       0.632
tagO
TagO.
       0.578
atpC
AtpC; Produces ATP from ADP in the presence of a proton gradient across the membrane.
     
 0.567
rffE
UDP-N-acetyl glucosamine-2-epimerase; Function of homologous gene experimentally demonstrated in an other organism; enzyme; Belongs to the UDP-N-acetylglucosamine 2-epimerase family.
       0.566
CBH22247.1
CMP/dCMP deaminase, zinc-binding.
       0.559
atpH
F0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family.
     
 0.530
atpF
F0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
     
 0.530
atpA
F1 sector of membrane-bound ATP synthase, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family.
       0.443
Your Current Organism:
Acetoanaerobium sticklandii
NCBI taxonomy Id: 1511
Other names: A. sticklandii, ATCC 12662, BCRC 14485, CCRC 14485, CCRC:14485, CCUG 9281, Clostridium sticklandii, DSM 519, NCIMB 10654, strain StadtmanHF
Server load: low (20%) [HD]