STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpiARibose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (218 aa)    
Predicted Functional Partners:
KMT64891.1
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
   
 0.964
KMT65943.1
Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family.
  
 0.946
KMT63741.1
Gluconate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.908
KMT64928.1
Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.897
KMT63635.1
6-phosphogluconate dehydrogenase; Catalyzes the formation of D-ribulose 5-phosphate from 6-phospho-D-gluconate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 6-phosphogluconate dehydrogenase family.
   
 
 0.850
tal
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.
  
 0.786
sucD
succinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit.
    
 0.735
KMT65179.1
6-phosphogluconate dehydrogenase; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH.
   
 
 0.713
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
  
 
 0.711
KMT66284.1
Ribose-phosphate pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribose-phosphate pyrophosphokinase family.
  
 
 0.711
Your Current Organism:
Catenovulum maritimum
NCBI taxonomy Id: 1513271
Other names: C. maritimum, CICC 10836, Catenovulum maritimum corrig. Li et al. 2016, Catenovulum maritimus, DSM 28813, Gammaproteobacteria bacterium Q1, Mariagarivorans maritimus, strain Q1
Server load: low (20%) [HD]