STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nqrFNa(+)-translocating NADH-quinone reductase subunit F; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway. (407 aa)    
Predicted Functional Partners:
nqrD
Na(+)-translocating NADH-quinone reductase subunit D; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family.
 
 
 0.998
nqrE
Na(+)-translocating NADH-quinone reductase subunit E; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family.
 
 
 0.997
nqrA
Na(+)-translocating NADH-quinone reductase subunit A; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 
 0.996
nqrC
Na(+)-translocating NADH-quinone reductase subunit C; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 
 0.993
nqrB
Na(+)-translocating NADH-quinone reductase subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol.
 
 
 0.990
KMT63695.1
Na(+)-translocating NADH-quinone reductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.885
KMT63696.1
Thiamine biosynthesis lipoprotein; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein. Belongs to the ApbE family.
 
     0.849
KMT66839.1
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
    
 
 0.646
KMT65960.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
  0.601
mazG
Nucleoside triphosphate hydrolase; Functions in degradation of stringent response intracellular messenger ppGpp; in Escherichia coli this gene is co-transcribed with the toxin/antitoxin genes mazEF; activity of MazG is inhibited by MazEF in vitro; ppGpp inhibits mazEF expression; MazG thus works in limiting the toxic activity of the MazF toxin induced during starvation; MazG also interacts with the GTPase protein Era; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.493
Your Current Organism:
Catenovulum maritimum
NCBI taxonomy Id: 1513271
Other names: C. maritimum, CICC 10836, Catenovulum maritimum corrig. Li et al. 2016, Catenovulum maritimus, DSM 28813, Gammaproteobacteria bacterium Q1, Mariagarivorans maritimus, strain Q1
Server load: low (16%) [HD]