STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KPB02966.1FabF; beta-ketoacyl-ACP synthase II, KASII; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (399 aa)    
Predicted Functional Partners:
KPB02768.1
Acyl carrier protein; Involved in the biosynthetic pathways of fatty acids, phospholipids, lipopolysaccharides, and oligosaccharides; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.991
KPB02769.1
FabF, beta-Ketoacyl-ACP synthase II, KASII; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family.
 
  
 0.962
KPB02403.1
ACP S-malonyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.946
KPB02770.1
NADPH:quinone oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
  0.915
acpP
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis.
  
 0.902
fabZ
3-hydroxyacyl-ACP dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs.
 
 0.896
fabH
3-oxoacyl-ACP synthase; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched-chain and/or straight-chain of fatty acids; Belongs to the thiolase-like superfamily. FabH family.
 
 
 0.847
KPB02771.1
Acylates the intermediate (KDO)2-lipid IVA to form (KDO)2-(lauroyl)-lipid IVA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.834
fabA
3-hydroxydecanoyl-ACP dehydratase; Necessary for the introduction of cis unsaturation into fatty acids. Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to E- (2)-decenoyl-ACP and then its isomerization to Z-(3)-decenoyl-ACP. Can catalyze the dehydratase reaction for beta-hydroxyacyl-ACPs with saturated chain lengths up to 16:0, being most active on intermediate chain length.
  
 0.808
accD
acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA.
 
 
 0.804
Your Current Organism:
Ahrensia marina
NCBI taxonomy Id: 1514904
Other names: A. marina, Ahrensia marina Liu et al. 2016, Ahrensia sp. LZD062, DSM 28886, JCM 30117, MCCC 1K00254, strain LZD062
Server load: low (22%) [HD]