STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KPB01316.1Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. (462 aa)    
Predicted Functional Partners:
KPB02654.1
3-methylcrotonyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.999
KPB02359.1
acetyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.999
pdhA
Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
 0.999
KPB01317.1
Branched-chain alpha-keto acid dehydrogenase subunit E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
 
0.999
KPB01319.1
E3 component of alpha keto acid dehydrogenase complexes LpdC; forms a homodimer; binds one molecule of FAD monomer; catalyzes NAD+-dependent oxidation of dihydrolipoyl cofactors that are covalently linked to the E2 component; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
KPB00754.1
Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2).
0.999
KPB01677.1
acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 0.996
prs
Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
  
 0.995
KPB00752.1
Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.991
KPB00936.1
Glutathione reductase; Maintains high levels of reduced glutathione.
 0.987
Your Current Organism:
Ahrensia marina
NCBI taxonomy Id: 1514904
Other names: A. marina, Ahrensia marina Liu et al. 2016, Ahrensia sp. LZD062, DSM 28886, JCM 30117, MCCC 1K00254, strain LZD062
Server load: low (14%) [HD]