STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrAUvrABC system protein A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (959 aa)    
Predicted Functional Partners:
uvrB
UvrABC system protein B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate and [...]
 
 0.995
APR07393.1
UvrABC system protein A.
  
  
 
0.913
APR06792.1
UvrABC system protein A.
  
  
 
0.912
uvrC
UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 
 0.868
APR08193.1
glmZ(sRNA)-inactivating NTPase; Displays ATPase and GTPase activities.
     
 0.715
mfd
Transcription-repair-coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily.
 
 
 
 0.688
APR08194.1
Putative gluconeogenesis factor; Required for morphogenesis under gluconeogenic growth conditions; Belongs to the gluconeogenesis factor family.
       0.597
APR08189.1
Thioredoxin reductase.
     
 0.593
whiA
Putative sporulation transcription regulator WhiA; Involved in cell division and chromosome segregation.
       0.566
APR08190.1
5'-deoxynucleotidase YfbR.
       0.523
Your Current Organism:
Lactobacillus parabuchneri
NCBI taxonomy Id: 152331
Other names: ATCC 49374, CCUG 32261, CIP 103368, CIP 106749 [[Lactobacillus ferintoshensis Simpson et al. 2002]], DSM 5707, JCM 12493, JCM 12511 [[Lactobacillus ferintoshensis Simpson et al. 2002]], L. parabuchneri, LMG 11457, LMG:11457, Lactobacillus ferintoshensis, Lactobacillus ferintoshensis Simpson et al. 2002, NBRC 107865, NCDO 2748, NCIMB 8838, strain R7-84 [[Lactobacillus ferintoshensis Simpson et al. 2002]], strain R7-84(T) [[Lactobacillus ferintoshensis Simpson et al. 2002]]
Server load: low (30%) [HD]