STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gatAglutamyl-tRNA amidotransferase; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (500 aa)    
Predicted Functional Partners:
gatB
glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily.
 0.999
gatC
glutamyl-tRNA amidotransferase; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family.
 
 0.999
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily.
  
 
 0.924
accA1
acetyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.915
lepA
GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner.
   
  
 0.838
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
  
 
 0.773
ligA
Aromatic ring-opening dioxygenase LigA; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily.
  
    0.755
aspS
aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily.
 
 
 0.730
carB
Carbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
  0.711
wecD
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.657
Your Current Organism:
Lawsonella clevelandensis
NCBI taxonomy Id: 1528099
Other names: CCUG 66657, Corynebacteriales bacterium CCF1, Corynebacteriales bacterium CCF2, Corynebacteriales bacterium X1036, Corynebacteriales bacterium X1698, Corynebacterineae bacterium NML 120705, Corynebacterineae bacterium X1698, DSM 45743, L. clevelandensis, Lawsonella clevelandensis Bell et al. 2016, bacterium CCF-01, strain X1036
Server load: low (18%) [HD]