STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AOX17224.1Acyl carrier protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (85 aa)    
Predicted Functional Partners:
nuoC
NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family.
   
 0.999
AOX18229.1
acyl-CoA synthetase; Activates fatty acids by binding to coenzyme A; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.973
AOX18234.1
Malonyl CoA-acyl carrier protein transacylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.941
nuoB
NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
 0.921
AOX16342.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.907
AOX16133.1
Acyl carrier protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
acpP
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis.
     
  0.900
rplU
50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family.
  
 
 0.895
nuoA
NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
   
  0.878
nuoH
NADH:ubiquinone oxidoreductase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
    
  0.876
Your Current Organism:
Kozakia baliensis
NCBI taxonomy Id: 153496
Other names: DSM 14400, IFO 16664, JCM 11301, K. baliensis, Kozakia baliensis Lisdiyanti et al. 2002, NBRC 16664, NRIC 0488, strain Yo-3
Server load: low (20%) [HD]