STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KKJ75715.1Heme/copper-type cytochrome/quinol oxidase, subunit 3; Derived by automated computational analysis using gene prediction method: Protein Homology. (168 aa)    
Predicted Functional Partners:
KKJ77772.1
Cytochrome C oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 
 0.999
KKJ77773.1
Cytochrome C oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 0.999
KKJ77716.1
Cytochrome B; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
 
 0.996
KKJ76389.1
NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.994
nuoH
NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
 0.993
KKJ77518.1
NADH-quinone oxidoreductase chain 13; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.993
KKJ75896.1
Cytochrome Cbb3; C-type cytochrome. Part of the cbb3-type cytochrome c oxidase complex.
  
 0.992
KKJ77717.1
Ubiquinol-cytochrome C reductase; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
  
 0.991
atpB
ATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
  
 
 0.991
KKJ78226.1
Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.989
Your Current Organism:
Kiloniella litopenaei
NCBI taxonomy Id: 1549748
Other names: K. litopenaei, Kiloniella sp. P1-1, LMG 27755, LMG:27755, MCCC 1A09869, strain P1-1
Server load: low (12%) [HD]