STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psuGPseudouridine-5-phosphate glycosidase; Catalyzes the reversible cleavage of pseudouridine 5'- phosphate (PsiMP) to ribose 5-phosphate and uracil. Functions biologically in the cleavage direction, as part of a pseudouridine degradation pathway; Belongs to the pseudouridine-5'-phosphate glycosidase family. (303 aa)    
Predicted Functional Partners:
KPN62485.1
Kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.997
upp
Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate.
    
  0.859
deoA
Thymidine phosphorylase; The enzymes which catalyze the reversible phosphorolysis of pyrimidine nucleosides are involved in the degradation of these compounds and in their utilization as carbon and energy sources, or in the rescue of pyrimidine bases for nucleotide synthesis. Belongs to the thymidine/pyrimidine-nucleoside phosphorylase family.
    
  0.853
KPN62487.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.722
mtnP
5'-methylthioadenosine phosphorylase; Catalyzes the reversible phosphorylation of S-methyl-5'- thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate. Involved in the breakdown of MTA, a major by-product of polyamine biosynthesis. Responsible for the first step in the methionine salvage pathway after MTA has been generated from S-adenosylmethionine. Has broad substrate specificity with 6-aminopurine nucleosides as preferred substrates; Belongs to the PNP/MTAP phosphorylase family. MTAP subfamily.
  
 
  0.703
KPN63564.1
Purine nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.
  
 
  0.703
KPN63142.1
Nucleoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
  0.691
KPN62488.1
Amino acid transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.572
KPN62470.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.518
KPN64385.1
Adenosine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.504
Your Current Organism:
Aliiroseovarius crassostreae
NCBI taxonomy Id: 154981
Other names: A. crassostreae, Aliiroseovarius crassostreae (Boettcher et al. 2005) Park et al. 2015, CVSP bacterium CV919-312, Crassostrea virginica symbiont, DSM 16950, Pseudoroseovarius crassostreae, Pseudoroseovarius crassostreae (Boettcher et al. 2005) Sun et al. 2015, Roseovarius crassostreae, Roseovarius crassostreae Boettcher et al. 2005, strain CV919-312
Server load: low (24%) [HD]