STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMW34436.1Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (198 aa)    
Predicted Functional Partners:
rph
Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation.
 
    0.993
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
 
 
 0.974
AMW34435.1
Coproporphyrinogen III oxidase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family.
 
    0.949
guaB
IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family.
  
 0.949
ndk
Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family.
  
 0.930
AMW34106.1
Xanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine.
   
 0.920
murI
Hypothetical protein; Provides the (R)-glutamate required for cell wall biosynthesis.
 
    0.912
surE
5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family.
    
  0.901
AMW34438.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
     0.727
AMW34439.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.660
Your Current Organism:
Haematospirillum jordaniae
NCBI taxonomy Id: 1549855
Other names: CCUG 66838, DSM 28903, H. jordaniae, Haematospirillum jordaniae Humrighouse et al. 2016, Rhodospirillaceae bacterium H2509, Rhodospirillaceae bacterium H2784, Rhodospirillaceae bacterium H3173, Rhodospirillaceae bacterium H3694, Rhodospirillaceae bacterium H4485, Rhodospirillaceae bacterium H4555, Rhodospirillaceae bacterium H4833, Rhodospirillaceae bacterium H4890, Rhodospirillaceae bacterium H5569, Rhodospirillaceae bacterium H5791, Rhodospirillaceae bacterium H5945, Rhodospirillaceae bacterium H6167, Rhodospirillaceae bacterium H6172, Rhodospirillaceae bacterium H6179, strain H5569
Server load: low (30%) [HD]