node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AMW34237.1 | AMW34607.1 | AY555_02525 | AY555_04780 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.916 |
AMW34237.1 | AMW35140.1 | AY555_02525 | AY555_08080 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. | 0.574 |
AMW34237.1 | gcvH | AY555_02525 | AY555_02515 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.999 |
AMW34237.1 | gcvPA | AY555_02525 | AY555_02520 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein. | 0.999 |
AMW34237.1 | gcvT | AY555_02525 | AY555_02510 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; Catalyzes the transfer of a methylene carbon from the methylamine-loaded GcvH protein to tetrahydrofolate, causing the release of ammonia and the generation of reduced GcvH protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AMW34237.1 | glyA | AY555_02525 | AY555_08150 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.987 |
AMW34237.1 | sucA | AY555_02525 | AY555_04770 | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | SucA; E1 component of the oxoglutarate dehydrogenase complex which catalyzes the formation of succinyl-CoA from 2-oxoglutarate; SucA catalyzes the reaction of 2-oxoglutarate with dihydrolipoamide succinyltransferase-lipoate to form dihydrolipoamide succinyltransferase-succinyldihydrolipoate and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.486 |
AMW34606.1 | AMW34607.1 | AY555_04775 | AY555_04780 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AMW34606.1 | AMW35140.1 | AY555_04775 | AY555_08080 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. | 0.994 |
AMW34606.1 | gcvH | AY555_04775 | AY555_02515 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.761 |
AMW34606.1 | gcvT | AY555_04775 | AY555_02510 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | Glycine cleavage system protein T; Catalyzes the transfer of a methylene carbon from the methylamine-loaded GcvH protein to tetrahydrofolate, causing the release of ammonia and the generation of reduced GcvH protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.634 |
AMW34606.1 | pdhA | AY555_04775 | AY555_08075 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | Pyruvate dehydrogenase (acetyl-transferring) E1 component subunit alpha; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). | 0.966 |
AMW34606.1 | sucA | AY555_04775 | AY555_04770 | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | SucA; E1 component of the oxoglutarate dehydrogenase complex which catalyzes the formation of succinyl-CoA from 2-oxoglutarate; SucA catalyzes the reaction of 2-oxoglutarate with dihydrolipoamide succinyltransferase-lipoate to form dihydrolipoamide succinyltransferase-succinyldihydrolipoate and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AMW34607.1 | AMW34237.1 | AY555_04780 | AY555_02525 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; Acts in conjunction with GvcH to form H-protein-S-aminomethyldihydrolipoyllysine from glycine; forms a heterodimer with subunit 1 to form the P protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.916 |
AMW34607.1 | AMW34606.1 | AY555_04780 | AY555_04775 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). | 0.999 |
AMW34607.1 | AMW35140.1 | AY555_04780 | AY555_08080 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2. | 0.999 |
AMW34607.1 | AMW35141.1 | AY555_04780 | AY555_08085 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Branched-chain alpha-keto acid dehydrogenase subunit E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). | 0.998 |
AMW34607.1 | gcvH | AY555_04780 | AY555_02515 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.981 |
AMW34607.1 | gcvPA | AY555_04780 | AY555_02520 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein. | 0.916 |
AMW34607.1 | gcvT | AY555_04780 | AY555_02510 | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; Catalyzes the transfer of a methylene carbon from the methylamine-loaded GcvH protein to tetrahydrofolate, causing the release of ammonia and the generation of reduced GcvH protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.954 |