STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greATranscription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (158 aa)    
Predicted Functional Partners:
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.935
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.931
OEK05040.1
DNA-directed RNA polymerase subunit omega; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 
 0.909
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.903
OEK05344.1
HIT family hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.806
OEK05346.1
Phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family.
       0.556
rsmA
16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))- dimethyltransferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits.
       0.556
OEK05347.1
Magnesium transporter; Acts as a magnesium transporter.
       0.501
rpsO
30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
   
    0.477
OEK06843.1
Molecular chaperone DnaK; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.461
Your Current Organism:
Fabibacter misakiensis
NCBI taxonomy Id: 1563681
Other names: F. misakiensis, Fabibacter misakiensis Wong et al. 2015, Fabibacter sp. 4U18, Fabibacter sp. NBRC 110216, KCTC 32969, NBRC 110216, strain SK-8
Server load: low (22%) [HD]