STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OFT24229.1Acetolactate synthase large subunit; catalyzes the formation of 2-acetolactate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (619 aa)    
Predicted Functional Partners:
OFT24228.1
Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
ilvC
Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate.
 
 
 0.996
OFT24551.1
Threonine ammonia-lyase; Catalyzes the formation of 2-oxobutanoate from L-threonine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.959
ilvD
Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family.
 
 0.949
OFT24223.1
Catalyzes the oxidation of 3-isopropylmalate to 3-carboxy-4-methyl-2-oxopentanoate in leucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.940
leuA
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily.
  
 
 0.923
HMPREF3175_07135
Hypothetical protein; Incomplete; too short partial abutting assembly gap; missing start; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the TPP enzyme family.
  
  
0.885
OFT23440.1
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.883
OFT24244.1
Pyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
     
 0.881
OFT23699.1
Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family.
  
  
 
0.879
Your Current Organism:
Arthrobacter sp. HMSC08H08
NCBI taxonomy Id: 1581143
Other names: A. sp. HMSC08H08
Server load: low (20%) [HD]