STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KLI75309.1Cell surface complex protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (645 aa)    
Predicted Functional Partners:
KLI75307.1
Cell surface protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.753
KLI75308.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.753
rpsF
30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA.
  
   0.653
KLI76440.1
Peptidase M23B; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.637
rpsL
30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
  
 
 0.636
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
  
 
 0.635
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
  
   0.633
rpsB
30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family.
  
 
 0.627
rpmF
50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family.
  
   0.622
rplI
50S ribosomal protein L9; Binds to the 23S rRNA.
  
 
 0.622
Your Current Organism:
Lactobacillus casei
NCBI taxonomy Id: 1582
Other names: ATCC 393, BCRC 10697, Bacillus a, Bacillus casei a, Bacterium casei a, CCRC 10697, CCRC:10697, CECT 475, CIP 103137, Caseobacterium vulgare, DSM 20011, IAM 12473, IFO 15883, KCTC 3109, L. casei, LMG 6904, LMG:6904, Lactobacillus casei subsp. casei, Lactobacillus sp. NCIM 2363, Lactobacillus sp. NCIM 2732, Lactobacillus sp. T2, Lactobacillus sp. T20, Lactobacterium casei, NBRC 15883, NCDO 161, NCIMB 11970, NCTC 13641, Streptobacterium casei, strain Hucker03, strain Orla-Jensen 7, strain OrlandL-323, strain Tittsler303
Server load: low (26%) [HD]