STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
plsYGlycerol-3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-phosphate (acyl-PO(4)) to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme utilizes acyl-phosphate as fatty acyl donor, but not acyl-CoA or acyl-ACP. (206 aa)    
Predicted Functional Partners:
gpsA
Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family.
 
 0.974
plsX
Phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA.
 
  
 0.951
plsC
Catalyzes the formation of 1,2-diacyl-sn-glycerol 3-phosphate from 1-acyl-sn-glycerol 3-phosphate using either acyl-CoA or acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 1-acyl-sn-glycerol-3-phosphate acyltransferase family.
  
 
 0.895
aas_5
acyl-ACP synthetase; Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3-phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.843
porB
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.833
mdh
Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate.
 
  
 0.812
deoC
Deoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 2 subfamily.
    
 0.793
plsB_1
Glycerol-3-phosphate acyltransferase; PlsB; catalyzes the formation of 1-acyl-sn-glycerol 3-phosphate by transfering the acyl moiety from acyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPAT/DAPAT family.
     
 0.788
AIR61219.1
Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.788
ppc_2
Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle.
     
 0.773
Your Current Organism:
Cedecea neteri
NCBI taxonomy Id: 158822
Other names: ATCC 33855, C. neteri, CCUG 18763, CDC 0621-75, CIP 103241, Cedecea sp. M006, Cedecea sp. ND02, Cedecea sp. ND14a, Cedecea sp. ND14b, DSM 13693, JCM 7582, LMG 7864, LMG:7864, NBRC 105707, NCTC 12120, strain 002
Server load: low (18%) [HD]