STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KHD17365.1Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (68 aa)    
Predicted Functional Partners:
KHD17327.1
Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.992
KHD17328.1
Acetolactate synthase 3 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.976
ilvC
Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate.
 
 
 0.974
leuB
3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate.
 
 
 0.941
leuA-2
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily.
 
 
 0.914
ilvD
Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family.
 
 
 0.873
KHD22271.1
Pyruvate dehydrogenase; Catalyzes the formation of acetate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family.
  
  
  0.866
ilvD-2
Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family.
 
 
 0.847
KHD20279.1
Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.834
KHD18368.1
Pyridoxal-5'-phosphate-dependent protein subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.832
Your Current Organism:
Paraburkholderia sacchari
NCBI taxonomy Id: 159450
Other names: Burkholderia sacchari, Burkholderia sacchari Bramer et al. 2001, CCT 6771, CCUG 46043, CIP 107211, DSM 17165, IPT 101, LMG 19450, LMG:19450, P. sacchari, Paraburkholderia sacchari (Braner et al. 2001) Sawana et al. 2015
Server load: low (26%) [HD]