STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dinBDNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (354 aa)    
Predicted Functional Partners:
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 0.934
lexA-I
Transcriptional repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
 
 
 0.933
dnaN
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
   
 0.926
PP_3117
Putative protein involved in error-prone processing of DNA lesions; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative factor; DNAmetabolism : DNA replication, recombination, and repair.
  
  
 0.921
dnaEB
Error-prone DNA polymerase; DNA polymerase involved in damage-induced mutagenesis and translesion synthesis (TLS). It is not the major replicative DNA polymerase.
 
  
 0.912
polB
DNA polymerase II; Function of homologous gene experimentally demonstrated in an other organism; enzyme; DNAmetabolism : DNA replication, recombination, and repair.
   
 0.888
imuB
DNA linked enzyme involved in DNA repair; Function of homologous gene experimentally demonstrated in an other organism; enzyme.
     
 0.849
dinG
Putative Helicase; DNA-dependent ATPase and 5'-3' DNA helicase.
   
 
 0.823
recN
Factor used in recombination and DNA repair; May be involved in recombinational repair of damaged DNA.
  
  
 0.811
recB
Chi activated ATP-dependent DNA helicase and dsDNA/ssDNA exonuclease; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for hom [...]
  
  
 0.795
Your Current Organism:
Pseudomonas putida KT2440
NCBI taxonomy Id: 160488
Other names: P. putida KT2440, Pseudomonas putida (strain KT2440), Pseudomonas putida str. KT2440
Server load: low (24%) [HD]