STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AQP44875.1Peptidase S41; Degrades oligopeptides; Belongs to the peptidase S41B family. (1067 aa)    
Predicted Functional Partners:
pheT
phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
   
 
 0.670
ftsZ
Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity.
   
 
 0.559
clpX
ATP-dependent protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP.
   
 
 0.558
AQP45024.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
 
   0.494
RPIT_01645
DNA integrity scanning protein DisA; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.484
AQP44876.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.484
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
  
    0.466
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
       0.448
AQP44263.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.448
AQP46109.1
Septum formation protein Maf; Nucleoside triphosphate pyrophosphatase. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids.
 
    0.442
Your Current Organism:
Tessaracoccus flavus
NCBI taxonomy Id: 1610493
Other names: DSM 100159, KCTC 39686, MCC 2769, T. flavus, Tessaracoccus flavus Kumari et al. 2016, Tessaracoccus sp. RP1, strain RP1
Server load: low (28%) [HD]