STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKS50509.1Clp protease ClpX; Derived by automated computational analysis using gene prediction method: Protein Homology. (698 aa)    
Predicted Functional Partners:
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.862
clpP
Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
 0.854
AKS50510.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.820
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
  
 
 0.715
grpE
Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...]
  
 
 0.691
groS
Molecular chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.653
groEL
Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 
 0.627
AKS50983.1
Heat-shock protein Hsp20; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the small heat shock protein (HSP20) family.
  
 
 0.621
mecA
Competence negative regulator MecA; Enables the recognition and targeting of unfolded and aggregated proteins to the ClpC protease or to other proteins involved in proteolysis.
    
 
 0.618
hrcA
HrcA family transcriptional regulator; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
 
  
 0.615
Your Current Organism:
Lactobacillus farciminis
NCBI taxonomy Id: 1612
Other names: ATCC 29644, BCRC 14043, CCUG 30671, CIP 103136, DSM 20184, KCTC 3681, L. farciminis, LMG 9200, LMG:9200, Lactobacillus sp. S215, NCIMB 11717, NRRL B-4566
Server load: low (30%) [HD]