STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKS51776.1Phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)    
Predicted Functional Partners:
AKS51777.1
MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.900
AKS50550.1
MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.622
nadK
Inorganic polyphosphate kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP.
   
 
  0.518
AKS51775.1
Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.513
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
       0.478
uvrA
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
       0.476
Your Current Organism:
Lactobacillus farciminis
NCBI taxonomy Id: 1612
Other names: ATCC 29644, BCRC 14043, CCUG 30671, CIP 103136, DSM 20184, KCTC 3681, L. farciminis, LMG 9200, LMG:9200, Lactobacillus sp. S215, NCIMB 11717, NRRL B-4566
Server load: low (14%) [HD]