STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
cysSCysteine--tRNA ligase; Pfam:pfam01406 tRNA synthetases class I (C) catalytic domain; Belongs to the class-I aminoacyl-tRNA synthetase family. (459 aa)    
Predicted Functional Partners:
ALO42987.1
Pfam:pfam06426 Serine acetyltransferase, N-terminal.
 
  
 0.959
ALO42843.1
Cysteine synthase; Pfam:pfam00291 Pyridoxal-phosphate dependent enzyme; Belongs to the cysteine synthase/cystathionine beta- synthase family.
  
 
 0.817
serS
Serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
 
 
 0.781
lpxH
UDP-2,3-diacylglucosamine hydrolase; Hydrolyzes the pyrophosphate bond of UDP-2,3- diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate (lipid X) and UMP by catalyzing the attack of water at the alpha-P atom. Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell.
     
 0.764
thrS
Threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr).
 
  
 0.757
leuS
Leucine--tRNA ligase; Pfam:pfam13603 Leucyl-tRNA synthetase, Domain 2; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 
 0.730
alaS
Alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain.
 
 
 0.719
ALO42569.1
Peptidyl-prolyl cis-trans isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides; Belongs to the cyclophilin-type PPIase family.
  
 0.717
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
 
  
 0.702
valS
Valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily.
 
  
 0.681
Your Current Organism:
Pseudoalteromonas phenolica
NCBI taxonomy Id: 161398
Other names: IAM 14989, JCM 21460, KCTC 12086, P. phenolica, Pseudoalteromonas phenolica Isnansetyo and Kamei 2003, Pseudoalteromonas sp. O-BC30, strain O-BC30
Server load: low (20%) [HD]