node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AJT40375.1 | AJT40376.1 | UM93_00260 | UM93_00265 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40375.1 | AJT40377.1 | UM93_00260 | UM93_00270 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40375.1 | AJT40378.1 | UM93_00260 | UM93_00275 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40375.1 | AJT40430.1 | UM93_00260 | UM93_00645 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate-semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | 0.916 |
AJT40375.1 | AJT41197.1 | UM93_00260 | UM93_06100 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40375.1 | aspA | UM93_00260 | UM93_00510 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Aspartate ammonia-lyase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. | 0.965 |
AJT40375.1 | kgd | UM93_00260 | UM93_07350 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Alpha-ketoglutarate decarboxylase; Kgd; produces succinic semialdehyde; part of alternative pathway from alpha-ketoglutarate to succinate; essential for normal growth; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.975 |
AJT40375.1 | sucC | UM93_00260 | UM93_16480 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. | 0.989 |
AJT40375.1 | sucD | UM93_00260 | UM93_16485 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | succinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. | 0.992 |
AJT40376.1 | AJT40375.1 | UM93_00265 | UM93_00260 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40376.1 | AJT40377.1 | UM93_00265 | UM93_00270 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40376.1 | AJT40378.1 | UM93_00265 | UM93_00275 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
AJT40376.1 | AJT40430.1 | UM93_00265 | UM93_00645 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate-semialdehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aldehyde dehydrogenase family. | 0.920 |
AJT40376.1 | AJT41197.1 | UM93_00265 | UM93_06100 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.917 |
AJT40376.1 | AJT41287.1 | UM93_00265 | UM93_06705 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Nicotinate-nucleotide pyrophosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. | 0.919 |
AJT40376.1 | aspA | UM93_00265 | UM93_00510 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Aspartate ammonia-lyase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. | 0.992 |
AJT40376.1 | kgd | UM93_00265 | UM93_07350 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | Alpha-ketoglutarate decarboxylase; Kgd; produces succinic semialdehyde; part of alternative pathway from alpha-ketoglutarate to succinate; essential for normal growth; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.957 |
AJT40376.1 | sucC | UM93_00265 | UM93_16480 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. | 0.980 |
AJT40376.1 | sucD | UM93_00265 | UM93_16485 | Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. | succinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. | 0.980 |
AJT40377.1 | AJT40375.1 | UM93_00270 | UM93_00260 | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |