STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ARJ04641.1Ribosomal-protein-alanine N-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (168 aa)    
Predicted Functional Partners:
tsaD
tRNA (adenosine(37)-N6)-threonylcarbamoyltransferase complex transferase subunit TsaD; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family.
 
  
 0.987
ARJ04640.1
tRNA (adenosine(37)-N6)-threonylcarbamoyltransferase complex dimerization subunit type 1 TsaB; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.915
ARJ04639.1
tRNA (adenosine(37)-N6)-threonylcarbamoyltransferase complex ATPase subunit type 1 TsaE; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.864
glmS
Glutamine--fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
     
 0.697
acpS
holo-ACP synthase; Transfers the 4'-phosphopantetheine moiety from coenzyme A to a Ser of acyl-carrier-protein; Belongs to the P-Pant transferase superfamily. AcpS family.
       0.691
ARJ04637.1
Alanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family.
     
 0.673
ARJ04638.1
Alanine racemase; Catalyzes the interconversion of L-alanine and D-alanine. May also act on other amino acids; Belongs to the alanine racemase family.
     
 0.673
coaA
Type I pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.559
ARJ04643.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.494
pheT
phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
 
   
 0.416
Your Current Organism:
Cnuibacter physcomitrellae
NCBI taxonomy Id: 1619308
Other names: C. physcomitrellae, CGMCC 1.15041, Cnuibacter physcomitrellae Zhou et al. 2016, DSM 29843, Microbacteriaceae bacterium XA, strain XA
Server load: low (16%) [HD]