STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rplLRibosomal protein L7 L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa)    
Predicted Functional Partners:
rpsB
30S ribosomal protein S2; Belongs to the universal ribosomal protein uS2 family.
  
 
 0.999
rpsN
30s ribosomal protein s14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
  
 
 0.999
rpsO
Ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
  
 
 0.999
rpmI
Hypothetical protein; Belongs to the bacterial ribosomal protein bL35 family.
   
 
 0.999
rplT
50s ribosomal protein l20p; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
   
 
 0.999
rpsL
Ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
 
 
 0.999
rpsG
Ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
 
 0.999
fusA
Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...]
 
 
 0.999
rpmB
Hypothetical protein; Belongs to the bacterial ribosomal protein bL28 family.
   
 
 0.999
rpsP
rpsP protein; Belongs to the bacterial ribosomal protein bS16 family.
   
 
 0.999
Your Current Organism:
Weissella minor
NCBI taxonomy Id: 1620
Other names: ATCC 35412, BCRC 14049, CCRC 14049, CCRC:14049, CCUG 30668, CECT 572, CIP 102978, DSM 20014, LMG 9847, LMG:9847, Lactobacillus minor, Lactobacillus viridescens subsp. minor, NCIMB 701973, W. minor, strain 3
Server load: low (12%) [HD]