STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMC11250.1Flavodoxin reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (351 aa)    
Predicted Functional Partners:
AMC09796.1
Formate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.989
AMC10482.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.989
AMC10353.1
Cysteine desulfurase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.930
AMC10136.1
Capsule biosynthesis protein CapK; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.926
AMC11514.1
Sulfurase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.917
nuoD
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
  
 
 0.914
AMC11564.1
NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.909
nuoA
NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
   
 
 0.903
nuoH
NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
 
 0.893
nuoN
NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
   
 
 0.891
Your Current Organism:
Lutibacter profundi
NCBI taxonomy Id: 1622118
Other names: DSM 100437, JCM 30586, L. profundi, Lutibacter profundi Le Moine Bauer et al. 2016, Lutibacter sp. LP1, strain LP1
Server load: low (16%) [HD]