STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KIC58060.1Preprotein translocase subunit YidC; Derived by automated computational analysis using gene prediction method: Protein Homology. (374 aa)    
Predicted Functional Partners:
KIC57962.1
DNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.978
KIC57963.1
Hypothetical protein; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family.
 
  
 0.952
rsmG
16S rRNA methyltransferase; Specifically methylates the N7 position of a guanine in 16S rRNA; Belongs to the methyltransferase superfamily. RNA methyltransferase RsmG family.
  
  
 0.859
rnpA
RNase P; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme.
       0.811
secY
Preprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently.
 
 
 0.784
rpmH
50S ribosomal protein L34; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL34 family.
       0.768
secD
Preprotein translocase subunit SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA.
  
 
 0.768
prfB
Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA.
 
 
 0.765
secF
Preprotein translocase subunit SecF; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA.
 
 
 0.761
rplQ
50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.708
Your Current Organism:
Microbacterium hominis
NCBI taxonomy Id: 162426
Other names: CIP 105731, DSM 12509, IFO 15708, JCM 12413, LCDC 84-209, M. hominis, NBRC 15708, VKM Ac-2081
Server load: low (26%) [HD]