STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pyrDDihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (342 aa)    
Predicted Functional Partners:
pyrE
Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP).
  
 0.995
KMN81812.1
CDP-6-deoxy-delta-3,4-glucoseen reductase; Catalyzes the formation of 3,6-dideoxy-D-glycero-D-glycero-4-hexulose; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.995
antC
Anthranilate dioxygenase reductase; Catalyzes the formation of catechol from anthranilate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.995
pyrC
Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate.
 
 
 0.994
KMN83726.1
Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.970
carB
Carbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.969
pyrF
Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily.
  
 
 0.956
KMN77663.1
Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.946
carA
Carbamoyl-phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family.
 
  
 0.931
pyrB
Aspartate carbamoyltransferase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family.
  
 
 0.931
Your Current Organism:
Chromobacterium sp. LK11
NCBI taxonomy Id: 1628212
Other names: C. sp. LK11
Server load: low (16%) [HD]