node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KYP82208.1 | clpA | WB66_24550 | WB66_13910 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease ClpX; ATPase and specificity subunit of the ClpA-ClpP ATP dependent serine protease; directs protease to specific substrates; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | 0.773 |
KYP82208.1 | clpP | WB66_24550 | WB66_15935 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.557 |
KYP82208.1 | clpP-2 | WB66_24550 | WB66_16795 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.557 |
KYP82208.1 | dnaJ | WB66_24550 | WB66_03575 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.921 |
KYP82208.1 | grpE | WB66_24550 | WB66_05000 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.964 |
KYP82208.1 | ibpA | WB66_24550 | WB66_20665 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein IbpA; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. | 0.524 |
KYP82214.1 | clpA | WB66_24520 | WB66_13910 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease ClpX; ATPase and specificity subunit of the ClpA-ClpP ATP dependent serine protease; directs protease to specific substrates; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | 0.773 |
KYP82214.1 | clpP | WB66_24520 | WB66_15935 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.557 |
KYP82214.1 | clpP-2 | WB66_24520 | WB66_16795 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.557 |
KYP82214.1 | dnaJ | WB66_24520 | WB66_03575 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.921 |
KYP82214.1 | grpE | WB66_24520 | WB66_05000 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.964 |
KYP82214.1 | ibpA | WB66_24520 | WB66_20665 | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein IbpA; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. | 0.524 |
KYP85318.1 | clpA | WB66_07745 | WB66_13910 | Chaperone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease ClpX; ATPase and specificity subunit of the ClpA-ClpP ATP dependent serine protease; directs protease to specific substrates; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | 0.779 |
KYP85318.1 | clpP | WB66_07745 | WB66_15935 | Chaperone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.557 |
KYP85318.1 | clpP-2 | WB66_07745 | WB66_16795 | Chaperone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. | 0.557 |
KYP85318.1 | dnaJ | WB66_07745 | WB66_03575 | Chaperone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.945 |
KYP85318.1 | grpE | WB66_07745 | WB66_05000 | Chaperone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.969 |
KYP85318.1 | ibpA | WB66_07745 | WB66_20665 | Chaperone; Derived by automated computational analysis using gene prediction method: Protein Homology. | Heat shock protein IbpA; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. | 0.524 |
clpA | KYP82208.1 | WB66_13910 | WB66_24550 | Clp protease ClpX; ATPase and specificity subunit of the ClpA-ClpP ATP dependent serine protease; directs protease to specific substrates; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.773 |
clpA | KYP82214.1 | WB66_13910 | WB66_24520 | Clp protease ClpX; ATPase and specificity subunit of the ClpA-ClpP ATP dependent serine protease; directs protease to specific substrates; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. | Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.773 |