node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
WD_0037 | aspS | WD_0037 | WD_0413 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit c; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | 0.557 |
WD_0037 | gatA | WD_0037 | WD_0505 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit c; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | 0.997 |
WD_0037 | gatB | WD_0037 | WD_0146 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit c; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit b; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | 0.997 |
WD_0519 | gatA | WD_0519 | WD_0505 | Conserved domain protein; Identified by similarity to GP:12620658 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | 0.685 |
WD_0519 | gmk | WD_0519 | WD_0439 | Conserved domain protein; Identified by similarity to GP:12620658 | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP | 0.664 |
WD_0519 | rpoD | WD_0519 | WD_1298 | Conserved domain protein; Identified by similarity to GP:12620658 | Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth | 0.607 |
aspS | WD_0037 | WD_0413 | WD_0037 | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit c; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | 0.557 |
aspS | gatA | WD_0413 | WD_0505 | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | 0.651 |
aspS | gatB | WD_0413 | WD_0146 | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit b; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | 0.860 |
aspS | gltX1 | WD_0413 | WD_0435 | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | Glutamyl-trna synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) | 0.504 |
aspS | gltX2 | WD_0413 | WD_0778 | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | Glutamyl-trna synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) | 0.499 |
gatA | WD_0037 | WD_0505 | WD_0037 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit c; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | 0.997 |
gatA | WD_0519 | WD_0505 | WD_0519 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Conserved domain protein; Identified by similarity to GP:12620658 | 0.685 |
gatA | aspS | WD_0505 | WD_0413 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) | 0.651 |
gatA | gatB | WD_0505 | WD_0146 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit b; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln) | 0.999 |
gatA | gltX1 | WD_0505 | WD_0435 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Glutamyl-trna synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) | 0.817 |
gatA | gltX2 | WD_0505 | WD_0778 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Glutamyl-trna synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) | 0.980 |
gatA | gmk | WD_0505 | WD_0439 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP | 0.728 |
gatA | pth | WD_0505 | WD_0175 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Peptidyl-trna hydrolase, pth1 family; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis | 0.905 |
gatA | pyrH | WD_0505 | WD_0530 | Aspartyl-trna(asn)/glutamyl-trna(gln) amidotransferase subunit a; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP | 0.679 |