STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OCX45812.1Oxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (323 aa)    
Predicted Functional Partners:
OCX44957.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
0.968
OCX44952.1
Sulfite reductase subunit beta; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family.
   
 0.965
OCX44861.1
Aminomethyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GcvT family.
  
 0.936
OCX45811.1
Globin; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.923
OCX45941.1
Pyridine nucleotide-disulfide oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.922
OCX45132.1
Pyridine nucleotide-disulfide oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.922
nuoA
NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
   
 
 0.910
nuoD
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
  
 
 0.908
nuoN
NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
    
 
 0.902
OCX45156.1
NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.902
Your Current Organism:
Acidiferrobacter thiooxydans
NCBI taxonomy Id: 163359
Other names: A. thiooxydans, Acidiferrobacter thiooxydans Hallberg et al. 2011, Acidithiobacillus ferrooxidans DSM 2392, DSM 2392, JCM 17358, Thiobacillus ferrooxidans DSM 2392, iron-oxidizing acidophile m-1, strain m-1
Server load: low (22%) [HD]