STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrBExcinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (662 aa)    
Predicted Functional Partners:
OSY88022.1
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
 
 0.991
OSY87691.1
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
 
 0.991
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 0.987
OSY89264.1
DNA polymerase III subunit epsilon; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.938
OSY87550.1
ATP-dependent DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.845
OSY89443.1
ATP-dependent DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.840
OSY88390.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.773
OSY87201.1
Asparagine synthetase B; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
      0.690
OSY89240.1
Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M16 family.
 
      0.687
OSY88388.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.654
Your Current Organism:
Tenacibaculum holothuriorum
NCBI taxonomy Id: 1635173
Other names: LMG 27758, LMG:27758, MCCC 1A09872, T. holothuriorum, Tenacibaculum holothuriorum Wang et al. 2015, Tenacibaculum sp. S2-2, strain S2-2
Server load: low (22%) [HD]