node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OSY89087.1 | efp | WH52_00035 | WH52_00905 | Translation initiation factor SUI1-related protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 0.445 |
OSY89087.1 | rpsG | WH52_00035 | WH52_06930 | Translation initiation factor SUI1-related protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. | 0.999 |
OSY89201.1 | efp | WH52_00675 | WH52_00905 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 0.438 |
OSY89201.1 | rplI | WH52_00675 | WH52_01680 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 50S ribosomal protein L9; Binds to the 23S rRNA. | 0.976 |
OSY89201.1 | rplQ | WH52_00675 | WH52_06770 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.982 |
OSY89201.1 | rpmB | WH52_00675 | WH52_06520 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family. | 0.960 |
OSY89201.1 | rpmF | WH52_00675 | WH52_02875 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family. | 0.880 |
OSY89201.1 | rpmG | WH52_00675 | WH52_06515 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family. | 0.814 |
OSY89201.1 | rpsF | WH52_00675 | WH52_01690 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. | 0.941 |
OSY89201.1 | rpsG | WH52_00675 | WH52_06930 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. | 0.999 |
OSY89201.1 | rpsR | WH52_00675 | WH52_01685 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. | 0.940 |
efp | OSY89087.1 | WH52_00905 | WH52_00035 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | Translation initiation factor SUI1-related protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.445 |
efp | OSY89201.1 | WH52_00905 | WH52_00675 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. | 0.438 |
efp | rplI | WH52_00905 | WH52_01680 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 50S ribosomal protein L9; Binds to the 23S rRNA. | 0.992 |
efp | rplQ | WH52_00905 | WH52_06770 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.989 |
efp | rpmB | WH52_00905 | WH52_06520 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family. | 0.998 |
efp | rpmF | WH52_00905 | WH52_02875 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family. | 0.996 |
efp | rpmG | WH52_00905 | WH52_06515 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family. | 0.996 |
efp | rpsF | WH52_00905 | WH52_01690 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. | 0.992 |
efp | rpsG | WH52_00905 | WH52_06930 | Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. | 0.999 |