STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PSM36_0047Deoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate. (286 aa)    
Predicted Functional Partners:
PSM36_1170
Transketolase; This model is designed to capture orthologs of bacterial transketolases. The group includes two from the yeast Saccharomyces cerevisiae but excludes dihydroxyactetone synthases (formaldehyde transketolases) from various yeasts and the even more distant mammalian transketolases. Among the family of thiamine diphosphate-dependent enzymes that includes transketolases, dihydroxyacetone synthases, pyruvate dehydrogenase E1-beta subunits, and deoxyxylulose-5-phosphate synthases, mammalian and bacterial transketolases seem not to be orthologous. [Energy metabolism, Pentose phos [...]
  
 0.933
tal
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.
    
 0.918
fba
Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; High confidence in function and specificity.
    
 0.911
fbaB
Fructose-bisphosphate aldolase class 1; D-fructose 1,6-bisphosphate = glycerone phosphate + D-glyceraldehyde 3-phosphate; High confidence in function and specificity.
    
 0.910
rbsK
Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway.
    
 0.910
tpiA
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
 0.875
nifJ
Pyruvate dehydrogenase (NADP(+)); Pyruvate + CoA + NADP(+) <=> acetyl-CoA + CO(2) + NADPH; High confidence in function and specificity.
  
 
  0.842
PSM36_1535
This CD includes PGM2 and PGM2L1 (phosphoglucomutase 2-like 1). The mammalian PGM2 is thought to be a phosphopentomutase that catalyzes the conversion of the nucleoside breakdown products, ribose-1-phosphate and deoxyribose-1-phosphate to the corresponding 5-phosphopentoses. PGM2L1 is thought to catalyze the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates that serve as cofactors for several sugar phosphomutases and possibly also as regulators of glycolytic enzymes; High confidence in function and specificity.
  
 
 0.841
pgi
Glucose-6-phosphate isomerase; D-glucose 6-phosphate = D-fructose 6-phosphate; High confidence in function and specificity; Belongs to the GPI family.
  
 
 0.841
PSM36_1521
Glyceraldehyde-3-phosphate dehydrogenase, cytosolic; D-glyceraldehyde 3-phosphate + phosphate + NAD+ = 3-phospho-D-glyceroyl phosphate + NADH; High confidence in function and specificity; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
    
 0.838
Your Current Organism:
Proteiniphilum saccharofermentans
NCBI taxonomy Id: 1642647
Other names: CECT 8610, DSM 28694, LMG 28299, LMG:28299, P. saccharofermentans, Proteiniphilum saccharofermentans Hahnke et al. 2016, Proteiniphilum sp. M3/6, strain M3/6
Server load: low (16%) [HD]