node1 | node2 | node1 annotation | node2 annotation | score |
PSM36_0025 | PSM36_0026 | TonB-dependent receptor plug; In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space; High confidence in function and specificity. | Hypothetical protein; High confidence in function and specificity. | 0.940 |
PSM36_0025 | PSM36_0027 | TonB-dependent receptor plug; In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space; High confidence in function and specificity. | Putative secreted protein. | 0.873 |
PSM36_0025 | PSM36_2170 | TonB-dependent receptor plug; In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space; High confidence in function and specificity. | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.671 |
PSM36_0026 | PSM36_0025 | Hypothetical protein; High confidence in function and specificity. | TonB-dependent receptor plug; In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space; High confidence in function and specificity. | 0.940 |
PSM36_0026 | PSM36_0027 | Hypothetical protein; High confidence in function and specificity. | Putative secreted protein. | 0.877 |
PSM36_0026 | PSM36_2164 | Hypothetical protein; High confidence in function and specificity. | This family is a putative methane oxygenase; High confidence in function and specificity. | 0.413 |
PSM36_0026 | PSM36_2167 | Hypothetical protein; High confidence in function and specificity. | Putative dehydrogenase; High confidence in function and specificity. | 0.410 |
PSM36_0026 | PSM36_2169 | Hypothetical protein; High confidence in function and specificity. | SusC/RagA family; This model describes a distinctive clade among the TonB-linked outer membrane proteins (OMP). Members of this family are restricted to the Bacteriodetes lineage (except for Gemmatimonas aurantiaca T-27 from the novel phylum Gemmatimonadetes) and occur in high copy numbers, with over 100 members from Bacteroides thetaiotaomicron VPI-5482 alone. Published descriptions of members of this family are available for RagA from Porphyromonas gingivalis, SusC from Bacteroides thetaiotaomicron, and OmpW from Bacteroides caccae. Members form pairs with members of the SusD/RagB fa [...] | 0.695 |
PSM36_0026 | PSM36_2170 | Hypothetical protein; High confidence in function and specificity. | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.712 |
PSM36_0026 | PSM36_2231 | Hypothetical protein; High confidence in function and specificity. | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.404 |
PSM36_0027 | PSM36_0025 | Putative secreted protein. | TonB-dependent receptor plug; In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space; High confidence in function and specificity. | 0.873 |
PSM36_0027 | PSM36_0026 | Putative secreted protein. | Hypothetical protein; High confidence in function and specificity. | 0.877 |
PSM36_0027 | PSM36_2164 | Putative secreted protein. | This family is a putative methane oxygenase; High confidence in function and specificity. | 0.406 |
PSM36_0027 | PSM36_2169 | Putative secreted protein. | SusC/RagA family; This model describes a distinctive clade among the TonB-linked outer membrane proteins (OMP). Members of this family are restricted to the Bacteriodetes lineage (except for Gemmatimonas aurantiaca T-27 from the novel phylum Gemmatimonadetes) and occur in high copy numbers, with over 100 members from Bacteroides thetaiotaomicron VPI-5482 alone. Published descriptions of members of this family are available for RagA from Porphyromonas gingivalis, SusC from Bacteroides thetaiotaomicron, and OmpW from Bacteroides caccae. Members form pairs with members of the SusD/RagB fa [...] | 0.622 |
PSM36_0027 | PSM36_2170 | Putative secreted protein. | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.652 |
PSM36_1067 | PSM36_2169 | Hypothetical protein; High confidence in function and specificity. | SusC/RagA family; This model describes a distinctive clade among the TonB-linked outer membrane proteins (OMP). Members of this family are restricted to the Bacteriodetes lineage (except for Gemmatimonas aurantiaca T-27 from the novel phylum Gemmatimonadetes) and occur in high copy numbers, with over 100 members from Bacteroides thetaiotaomicron VPI-5482 alone. Published descriptions of members of this family are available for RagA from Porphyromonas gingivalis, SusC from Bacteroides thetaiotaomicron, and OmpW from Bacteroides caccae. Members form pairs with members of the SusD/RagB fa [...] | 0.628 |
PSM36_1067 | PSM36_2170 | Hypothetical protein; High confidence in function and specificity. | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.704 |
PSM36_1081 | PSM36_2169 | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | SusC/RagA family; This model describes a distinctive clade among the TonB-linked outer membrane proteins (OMP). Members of this family are restricted to the Bacteriodetes lineage (except for Gemmatimonas aurantiaca T-27 from the novel phylum Gemmatimonadetes) and occur in high copy numbers, with over 100 members from Bacteroides thetaiotaomicron VPI-5482 alone. Published descriptions of members of this family are available for RagA from Porphyromonas gingivalis, SusC from Bacteroides thetaiotaomicron, and OmpW from Bacteroides caccae. Members form pairs with members of the SusD/RagB fa [...] | 0.717 |
PSM36_1081 | PSM36_2170 | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.671 |
PSM36_1081 | PSM36_2231 | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | SusD-like proteins from Bacteroidetes, members of the human distal gut microbiota, are part of the starch utilization system (Sus). Sus is one of the large clusters of glycosyl hydrolases, called polysaccharide utilization loci (PULs), which play an important role in polysaccharide recognition and uptake, and it is needed for growth on amylose, amylopectin, pullulan, and maltooligosaccharides. SusD, together with SusC, a predicted beta-barrel porin, forms the minimum outer-membrane starch-binding complex. The adult human distal gut microbiota is essential for digestion of a large varie [...] | 0.774 |