node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
PSM36_0299 | PSM36_2182 | PSM36_0299 | PSM36_2182 | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins; High confidence in function and specificity. | 0.678 |
PSM36_0299 | PSM36_2445 | PSM36_0299 | PSM36_2445 | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide; High confidenc [...] | 0.842 |
PSM36_0299 | PSM36_3023 | PSM36_0299 | PSM36_3023 | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | Histidine kinase-like ATPases; This family includes several ATP-binding proteins for example: histidine kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like ATPases and DNA mismatch repair proteins; High confidence in function and specificity. | 0.857 |
PSM36_0299 | hndC | PSM36_0299 | PSM36_3021 | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | NADH:ubiquinone oxidoreductase; This model describes the F chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoF. This family does not have any members in chloroplast or cyanobacteria, where the quinone may be plastoquinone and NADH may be replaced by NADPH, nor in Methanosarcina, where NADH is replaced by F420H2. [Energy metabolism, Electron transport]; High confidence in function and specificity. | 0.509 |
PSM36_2182 | PSM36_0299 | PSM36_2182 | PSM36_0299 | Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins; High confidence in function and specificity. | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | 0.678 |
PSM36_2182 | PSM36_2445 | PSM36_2182 | PSM36_2445 | Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins; High confidence in function and specificity. | This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide; High confidenc [...] | 0.999 |
PSM36_2182 | PSM36_3023 | PSM36_2182 | PSM36_3023 | Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins; High confidence in function and specificity. | Histidine kinase-like ATPases; This family includes several ATP-binding proteins for example: histidine kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like ATPases and DNA mismatch repair proteins; High confidence in function and specificity. | 0.572 |
PSM36_2182 | hndC | PSM36_2182 | PSM36_3021 | Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins; High confidence in function and specificity. | NADH:ubiquinone oxidoreductase; This model describes the F chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoF. This family does not have any members in chloroplast or cyanobacteria, where the quinone may be plastoquinone and NADH may be replaced by NADPH, nor in Methanosarcina, where NADH is replaced by F420H2. [Energy metabolism, Electron transport]; High confidence in function and specificity. | 0.468 |
PSM36_2445 | PSM36_0299 | PSM36_2445 | PSM36_0299 | This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide; High confidenc [...] | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | 0.842 |
PSM36_2445 | PSM36_2182 | PSM36_2445 | PSM36_2182 | This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide; High confidenc [...] | Thiamine pyrophosphate (TPP) family, E1 of PDC_ADC_BCADC subfamily, TPP-binding module; composed of proteins; High confidence in function and specificity. | 0.999 |
PSM36_2445 | PSM36_3023 | PSM36_2445 | PSM36_3023 | This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide; High confidenc [...] | Histidine kinase-like ATPases; This family includes several ATP-binding proteins for example: histidine kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like ATPases and DNA mismatch repair proteins; High confidence in function and specificity. | 0.789 |
PSM36_2445 | hndC | PSM36_2445 | PSM36_3021 | This model describes dihydrolipoamide dehydrogenase, a flavoprotein that acts in a number of ways. It is the E3 component of dehydrogenase complexes for pyruvate, 2-oxoglutarate, 2-oxoisovalerate, and acetoin. It can also serve as the L protein of the glycine cleavage system. This family includes a few members known to have distinct functions (ferric leghemoglobin reductase and NADH:ferredoxin oxidoreductase) but that may be predicted by homology to act as dihydrolipoamide dehydrogenase as well. The motif GGXCXXXGCXP near the N-terminus contains a redox-active disulfide; High confidenc [...] | NADH:ubiquinone oxidoreductase; This model describes the F chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoF. This family does not have any members in chloroplast or cyanobacteria, where the quinone may be plastoquinone and NADH may be replaced by NADPH, nor in Methanosarcina, where NADH is replaced by F420H2. [Energy metabolism, Electron transport]; High confidence in function and specificity. | 0.651 |
PSM36_3022 | PSM36_3023 | PSM36_3022 | PSM36_3023 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | Histidine kinase-like ATPases; This family includes several ATP-binding proteins for example: histidine kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like ATPases and DNA mismatch repair proteins; High confidence in function and specificity. | 0.884 |
PSM36_3022 | PSM36_3024 | PSM36_3022 | PSM36_3024 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | PHP domain-containing protein; HisPPase catalyzes the eighth step of histidine biosynthesis, in which L-histidinol phosphate undergoes dephosphorylation to produce histidinol. HisPPase can be classified into two types: the bifunctional HisPPase found in proteobacteria that belongs to the DDDD superfamily and the monofunctional Bacillus subtilis type that is a member of the PHP family. The PHP (also called histidinol phosphatase-2/HIS2) domain is associated with several types of DNA polymerases, such as PolIIIA and family X DNA polymerases, stand alone histidinol phosphate phosphatases [...] | 0.885 |
PSM36_3022 | PSM36_3025 | PSM36_3022 | PSM36_3025 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | This presumed domain is about 120 amino acids in length. It is found associated with CBS domains pfam00571, as well as the CbiA domain pfam01656. The function of this domain is unknown. It is named the DRTGG domain after some of the most conserved residues. This domain may be very distantly related to a pair of CBS domains. There are no significant sequence similarities, but its length and association with CBS domains supports this idea (Bateman A, pers. obs.); Conserved hypothetical protein. | 0.860 |
PSM36_3022 | PSM36_3026 | PSM36_3022 | PSM36_3026 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | Putative [FeFe] hydrogenase; This model describes iron-only hydrogenases of anaerobic and microaerophilic bacteria and protozoa. This model is narrower, and covers a longer stretch of sequence, than pfam02906. This family represents a division among families that belong to pfam02906, which also includes proteins such as nuclear prelamin A recognition factor in animals. Note that this family shows some heterogeneity in terms of periplasmic, cytosolic, or hydrogenosome location, NAD or NADP dependence, and overal protein protein length; High confidence in function and specificity. | 0.927 |
PSM36_3022 | PSM36_3027 | PSM36_3022 | PSM36_3027 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | Anti-sigma regulatory factor (Ser/Thr protein kinase) [Signal transduction mechanisms]; High confidence in function and specificity. | 0.858 |
PSM36_3022 | PSM36_3028 | PSM36_3022 | PSM36_3028 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | Hypothetical protein. | 0.841 |
PSM36_3022 | hndC | PSM36_3022 | PSM36_3021 | Thioredoxin (TRX)-like [2Fe-2S] Ferredoxin (Fd) family; composed of [2Fe-2S] Fds with a TRX fold (TRX-like Fds) and proteins containing domains; High confidence in function and specificity. | NADH:ubiquinone oxidoreductase; This model describes the F chain of complexes that resemble NADH-quinone oxidoreductases. The electron acceptor is a quinone, ubiquinone, in mitochondria and most bacteria, including Escherichia coli, where the recommended gene symbol is nuoF. This family does not have any members in chloroplast or cyanobacteria, where the quinone may be plastoquinone and NADH may be replaced by NADPH, nor in Methanosarcina, where NADH is replaced by F420H2. [Energy metabolism, Electron transport]; High confidence in function and specificity. | 0.930 |
PSM36_3023 | PSM36_0299 | PSM36_3023 | PSM36_0299 | Histidine kinase-like ATPases; This family includes several ATP-binding proteins for example: histidine kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-like ATPases and DNA mismatch repair proteins; High confidence in function and specificity. | Periplasmic binding domain of two-component sensor kinase signaling systems, some of which are fused with a C-terminal histidine kinase A domain (HisK) and/or a signal receiver domain (REC). Members of this group share homology with a family of pentose/hexose sugar-binding proteins of the type I periplasmic binding protein superfamily and are predicted to be involved in sensing of environmental stimuli; their substrate specificities, however, are not known in detail; High confidence in function and specificity. | 0.857 |