node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AMS10324.1 | xth | A2I91_00640 | A2I91_00645 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.773 |
AMS10400.1 | xth | A2I91_01045 | A2I91_00645 | ArsC family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ArsC family. | Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.778 |
birA | mutY | A2I91_05765 | A2I91_09160 | Bifunctional biotin--[acetyl-CoA-carboxylase] synthetase/biotin operon repressor; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family. | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.476 |
birA | xth | A2I91_05765 | A2I91_00645 | Bifunctional biotin--[acetyl-CoA-carboxylase] synthetase/biotin operon repressor; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family. | Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.771 |
dnaN | mutY | A2I91_00375 | A2I91_09160 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.603 |
dnaN | polA | A2I91_00375 | A2I91_04440 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | DNA polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.999 |
dnaN | ung | A2I91_00375 | A2I91_01295 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | uracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine. | 0.634 |
dnaN | xth | A2I91_00375 | A2I91_00645 | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.948 |
mutY | birA | A2I91_09160 | A2I91_05765 | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Bifunctional biotin--[acetyl-CoA-carboxylase] synthetase/biotin operon repressor; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a repressor; Belongs to the biotin--protein ligase family. | 0.476 |
mutY | dnaN | A2I91_09160 | A2I91_00375 | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] | 0.603 |
mutY | nth | A2I91_09160 | A2I91_06245 | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. | 0.523 |
mutY | polA | A2I91_09160 | A2I91_04440 | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | DNA polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.434 |
mutY | xth | A2I91_09160 | A2I91_00645 | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.910 |
nfo | nth | A2I91_07535 | A2I91_06245 | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin. | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. | 0.701 |
nfo | polA | A2I91_07535 | A2I91_04440 | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin. | DNA polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.483 |
nfo | ung | A2I91_07535 | A2I91_01295 | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin. | uracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine. | 0.604 |
nfo | xth | A2I91_07535 | A2I91_00645 | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin. | Exodeoxyribonuclease III; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.843 |
nth | mutY | A2I91_06245 | A2I91_09160 | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. | A/G-specific adenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.523 |
nth | nfo | A2I91_06245 | A2I91_07535 | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic sites (AP sites) to produce new 5'-ends that are base-free deoxyribose 5-phosphate residues. It preferentially attacks modified AP sites created by bleomycin and neocarzinostatin. | 0.701 |
nth | polA | A2I91_06245 | A2I91_04440 | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. | DNA polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.686 |