STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ODS75207.1Dihydrofolate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the folylpolyglutamate synthase family. (434 aa)    
Predicted Functional Partners:
ODS82328.1
Dihydropteroate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.997
ODS78017.1
2-amino-4-hydroxy-6- hydroxymethyldihydropteridine diphosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.978
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.909
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis.
     
 0.898
ODS77205.1
Diacylglycerol kinase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
     
 0.894
ODS81800.1
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family.
    
 0.872
ODS82169.1
Dihydroneopterin aldolase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin.
 
 
 0.854
folD
Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
 
  
 0.812
ODS75208.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.803
ODS86026.1
Dihydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.801
Your Current Organism:
Cytophagaceae bacterium SCN5212
NCBI taxonomy Id: 1660162
Other names: C. bacterium SCN 52-12, Cytophagaceae bacterium SCN 52-12
Server load: low (18%) [HD]