STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recBHypothetical protein; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoenzyme [...] (1246 aa)    
Predicted Functional Partners:
recC
Exodeoxyribonuclease V subunit gamma; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and re [...]
 
 0.998
recD
Exodeoxyribonuclease V subunit alpha; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and re [...]
 
 0.998
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
     
 0.562
recA
Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.553
sbcD
Exonuclease SbcD; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family.
 
  
 0.526
AKX44092.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.523
AKX44093.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.523
AKX44094.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.523
AKX44219.1
DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.475
AKX44096.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0145 family.
       0.458
Your Current Organism:
Oblitimonas alkaliphila
NCBI taxonomy Id: 1697053
Other names: CCUG 67636, DSM 100830, O. alkaliphila, Oblitimonas alkaliphila Drobish et al. 2016, Pseudomonadaceae bacterium B4199, Pseudomonadaceae bacterium C6819, Pseudomonadaceae bacterium C6918, Pseudomonadaceae bacterium D2441, Pseudomonadaceae bacterium D3318, Pseudomonadaceae bacterium E1086, Pseudomonadaceae bacterium E1148, Pseudomonadaceae bacterium E5571, bacterium B4199, bacterium C6819, bacterium C6918, bacterium D2441, bacterium D3318, bacterium E1086, bacterium E1148, bacterium E5571, strain B4199
Server load: low (12%) [HD]