STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OES46722.1GNAT family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (153 aa)    
Predicted Functional Partners:
OES44126.1
Chorismate mutase; Catalyzes the formation of 3-deoxy-D-aribino-hept-2-ulosonate 7-phosphate from phosphoenolpyruvate and D-erythrose 4-phosphate and the formation of prephenate from chorismate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.913
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
  
 
 0.836
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).
  
 
 0.802
aroQ
Type II 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family.
  
 
 0.801
aroK
Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family.
  
 
 0.794
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
  
 
 0.781
OES44251.1
Prephenate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.773
adk
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
    
 0.742
OES46489.1
Catalyzes the transamination of the aromatic amino acid forming a ketoacid; first step in aromatic amino acid degradation in lactococci; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.721
OES46500.1
LL-diaminopimelate aminotransferase; Produces methionine from 2-keto-4-methylthiobutyrate and glutamine in vitro; mutations do not affect methionine salvage in vivo however; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.721
Your Current Organism:
Domibacillus iocasae
NCBI taxonomy Id: 1714016
Other names: CCTCC AB 2015183, D. iocasae, DSM 29979, Domibacillus iocasae Sun and Sun 2016, Domibacillus sp. S6, strain S6
Server load: low (26%) [HD]