STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gyrADNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (815 aa)    
Predicted Functional Partners:
gyrB
DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
 
 0.999
metG
methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
  
  
 0.831
folD
Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
   
 0.815
AMK10109.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.805
AMK10594.1
S26 family signal peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase S26 family.
  
  
 0.796
AMK10107.1
Phosphoglycerate mutase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.744
AMK10108.1
Glycosyl transferase family 1; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.737
ftsZ
Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity.
  
 
 
 0.734
nusA
Transcription elongation factor NusA; Participates in both transcription termination and antitermination.
  
  
 0.722
AMK10106.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.714
Your Current Organism:
Pseudodesulfovibrio indicus
NCBI taxonomy Id: 1716143
Other names: DSM 101483, Desulfovibrio indicus, Desulfovibrio sp. J2, MCCC 1A01867, P. indicus, Pseudodesulfovibrio indicus Cao et al. 2016, strain J2
Server load: low (20%) [HD]