STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
grpEMolecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] (169 aa)    
Predicted Functional Partners:
dnaK
Chaperone protein DnaK; Acts as a chaperone.
 
 0.998
dnaK-2
Molecular chaperone DnaK; Acts as a chaperone.
 
 0.994
KQC04440.1
Thermosome subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TCP-1 chaperonin family.
 
 0.980
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 
 
 0.973
dnaJ-2
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 
 
 0.971
KQC04714.1
Molecular chaperone DnaJ; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.946
KQC04445.1
Membrane bound Lon protease from Thermococcus kodakarensis shows ATP-dependent protease activity towards folded polypeptides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase S16 family.
  
  
 0.862
dnaG
DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication.
  
  
 0.589
KQC05190.1
Peroxiredoxin; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides.
   
 
 0.588
KQC03603.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the small heat shock protein (HSP20) family.
  
  
 0.569
Your Current Organism:
Methanoculleus sp. SDB
NCBI taxonomy Id: 1735326
Other names: M. sp. SDB
Server load: low (18%) [HD]