node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KQZ00587.1 | KQZ00964.1 | ASD45_06765 | ASD45_08905 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.996 |
KQZ00587.1 | KQZ01413.1 | ASD45_06765 | ASD45_11545 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | 0.803 |
KQZ00587.1 | nuoB | ASD45_06765 | ASD45_08875 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.998 |
KQZ00587.1 | nuoC | ASD45_06765 | ASD45_08880 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.998 |
KQZ00587.1 | nuoD | ASD45_06765 | ASD45_08885 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.998 |
KQZ00587.1 | nuoI | ASD45_06765 | ASD45_08915 | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.467 |
KQZ00859.1 | KQZ01413.1 | ASD45_08325 | ASD45_11545 | Undecaprenyl-phosphate glucose phosphotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | 0.952 |
KQZ00964.1 | KQZ00587.1 | ASD45_08905 | ASD45_06765 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.996 |
KQZ00964.1 | KQZ01413.1 | ASD45_08905 | ASD45_11545 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | 0.747 |
KQZ00964.1 | nuoB | ASD45_08905 | ASD45_08875 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
KQZ00964.1 | nuoC | ASD45_08905 | ASD45_08880 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.999 |
KQZ00964.1 | nuoD | ASD45_08905 | ASD45_08885 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
KQZ00964.1 | nuoI | ASD45_08905 | ASD45_08915 | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
KQZ01284.1 | KQZ01413.1 | ASD45_10795 | ASD45_11545 | 3-oxoacyl-ACP synthase; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | 0.802 |
KQZ01413.1 | KQZ00587.1 | ASD45_11545 | ASD45_06765 | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.803 |
KQZ01413.1 | KQZ00859.1 | ASD45_11545 | ASD45_08325 | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | Undecaprenyl-phosphate glucose phosphotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.952 |
KQZ01413.1 | KQZ00964.1 | ASD45_11545 | ASD45_08905 | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.747 |
KQZ01413.1 | KQZ01284.1 | ASD45_11545 | ASD45_10795 | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | 3-oxoacyl-ACP synthase; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. | 0.802 |
KQZ01413.1 | KQZ01997.1 | ASD45_11545 | ASD45_14885 | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.906 |
KQZ01413.1 | miaB | ASD45_11545 | ASD45_17040 | Sodium:proton antiporter; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. | (dimethylallyl)adenosine tRNA methylthiotransferase; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. | 0.748 |